94 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 2, FEBRUARY 1980

vol. 9, no. 1, pp. 53-56, 122, 124, Jan. 1970.

[3] T.G. Bryant and J. A. Weiss, “Parameters of microstrip transmis-
sion lines and of coupled pairs of microstrip lines,” IEEE Trans.
Microwave Theory Tech., vol. MTT-16, pp. 1021-1027, Dec. 1968.

[4] A. Farrar and A. T. Adams, “Characteristics impedance of micro-
strip by the method of moments,” IEEE Trans. Microwave Theory
Tech., vol. MTT-18, pp. 65-66, Jan. 1970.

[5] P. Silvester, “TEM wave properties of microstrip transmission
lines,” Proc. IEE (London), vol. 115, pp. 43-48, Jan. 1968.

[6] A. Farrar and A. T. Adams, “Computation of lumped microstrip
capacitances by matrix methods-rectangular sections and end
effect,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp.
495-497, May 1971.

{71 T. Itoh and R. Mittra, “A new method for calculating the capaci-
tance of a circular disk for microwave integrated circuits,” IEEE
Trans. Microwave Theory Tech., vol. MTT-21, pp. 431, 432, June
1973.

[8] A. Farrar and A. T. Adams, “Method of moments applications

volume VI—Matrix methods for static microstrip,” Rome Air
Development Center, Rep. RADC-TR-73-217, vol. VI, Feb. 1975.

{91 R. F. Harrington, Field Computation by Moment Methods. New
York: Macmillian, 1968.

{10] R.F. Harrington and K. Pontoppidan, “Computation of Laplacian
potentials by an equivalent source method,” Proc. IEE, vol. 116,
no. 10, pp. 1715-1720, Oct. 1969.

[11] A.T. Adams and J. R. Mautz, “Computer solution of electrostatic
problems by matrix inversion,” in Proc. Nat. Electronics Conf., vol.
25, pp. 198-201, Dec. 1969.

[12] C. E. Smith, “A coupled integral equation solution for microstrip
transmission lines,” in JEEE G-MTT Microwave Symp. Dig., pp.
284-286, June 1973.

[13] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New
York: McGraw-Hill, 1961.

[14] R. S. Chang, “A numerical solution technique for the truncated
microstrip transmission line,” M.S. thesis, University of Mis-
sissippi, University, Aug. 1975.

Coupled Microstrip Disk Resonators

NIKOLAOS K. UZUNOGLU and P. KATECHI

Abstract—The coupling between microstrip disk resonators is investi-
gated analytically and experimentally. The interaction between the printed
disks is modeled by a gap capacitance, which is computed by solving the
corresponding electrostatic problem. An integral equation is used to de-
termine the nonsymmetric charge distribution on the disk resonators.
Numerical results are presented for several cases. For a specific case the
prediction of the theory is compared with the experiment.

I. INTRODUCTION

HE GAP CAPACITANCE for microstrip printed

circuits [1], [2] is investigated by several authors,
where mostly linear edge shapes are treated. In this article
the coupling between printed disk resonators is consid-
ered.

The geometry of the problem is defined in Fig. 1. The
coupled disk resonators are printed on a grounded dielec-
tric substrate. The substrate thickness is H with a relative
dielectric constant ¢.. Also a second perfect conductor-
ground plane is assumed at z = B. The coupling between
the two resonators is assumed to be mainly due to the
fringing effects of the electric fields; and, as a result, the
coupling between the two disks can be modeled by a gap
capacitance C,. In Section II a method for computing C,
is developed. The method is based on using the cylindrical
coordinates in conjunction with Galerkin technique. The
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Fig. 1. Coupled resonator geometry.

resonance frequencies for disk resonators can be com-
puted by assuming infinite magnetic conductivity resona-
tors walls [3]. The behavior of coupled resonators can be
predicted by considering an equivalent circuit around
each resonance frequency.

Assuming the disks to be raised at ¥;=1/2 and V,=
—1/2 V the total charge on each disk will be

Q(D)=C(D)+(1/2)C (D)

where C is the self capacitance of each disk. For very
large D values

lim Q(D)=(1/2)C
D—+oo
so the gap capacitance will be
C(D)=Q(D)— lim Q(D). 2)
Do+
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II. EVALUATION OF C (D) GAP CAPACITANCE

An integral equation method is used to handle the
electrostatic problem for coupled disk resonators. In order
to decrease the complexity due to the boundary condi-
tions, first the Green’s function G(r,#’) of the problem in
the absence of the printed disk conductors is determined.
The Green’s function is defined as the response of the
electric field to a unit charge excitation.

In terms of the cylindrical harmonic functions G(r,r")
(see Appendix I) is given as

G(p,0/p's¢")

+ o0 +oo
= fo a S T (to)], (tp)e™ =W (s, B,H,er) (3)
o0

m= —

where W(1, B, H, er) = {(coth(+(B — H)) + ercoth(tH)) -
27e,)} ! and (p,9), (p',¢') are the cylindrical coordinates
on the dielectric substrate (in (3) the source and observa-
tion points are assumed to be at z=z'=H).

Given the disk voltages V;= — V,=1/2 the charge dis-

tributions g,(p,, 1), ¢2(py¢,) on the disks satisfies the
symmetry relations

41(p191) = q1(py, —d1) = — @02, ™ — ;) 4)

where (p;,9,), (05, 9,) are the local coordinates of the two
disks (see Fig. 1). The integral equation for the charge
distribution will be

fD Gloy b1/ ) 41(p1s P01 0,

+ [ Glonoa/or e alon 90idosdds=1/2 (5)

where D1, D2 are for the areas of the two disks. The
point (p,,¢,)=(p,,¢,) is assumed to be on D1. Applying
the translational addition theorem for cylindrical waves

[4]
. + o0
Jm(tpz)elm%: 2 ']k(tD )Jm+k(tP1)el(m+k)¢l( - l)k

k= —co
(6)
and using the symmetry relation (4), (6) can be written as
fD lp’dp’a’(#’{ Glo, ¢/, ¢)a1(p',9")

- G'(p,0/0, )07 —¢)}=1/2 (T)
where (p,¢)e D1 and

G/(f”‘p/pl"p,)
+ oo + o0 + o0
= [0 d S S J D)V, i(10),,(10)
m= =00 k= —o0

-W(t, B, H,e,) e~ ®eke(— 1)k,

Defining the Fourier coefficients

R q,(p’>¢") ' 1 ,
(1/2m e ¢(q1(p',w—¢'>)d¢ ((—1)’")“’"'(")
®)

and multiplying (7) by e "%, after a Fourier integration,
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the following equation is obtained:
+ o0

fo gy 3

Tom(0:0)) 4, (0) = 8,0(1/2)
8,0 being the Kronecker delta and

+ oo
Tun(pop)= [ i, (10)7(10)

(8= Jn—m(IDY—=1)")W(1,B,H,¢,). (10)

In order to determine the unknown coefficients {g,,(0")}
a linearly independent set of functions is

)

m=— o0

N

gn(p)= ZOIm(S,p’)Cr(m) (11)
where I,(x),m=0,%+1,£2,--- are the modified Bessel
functions. The real numbers sy,5,,5,,- -+ are pivots and
C,(m) are unknown coefficients. The choice of modified
Bessel functions as a basis set is very appropriate since
these are monotonically increasing functions and as a
result are natural to the charge distribution on the disk.

A similar basis function has been used successfully for
microstrip line problems [5]. In order to apply the
Galerkin method, (11) is substituted in (9), then multiply-
ing both sides by I,(s,p) (with {s,}={s,}), after an in-
tegration the following set of equations are obtained:

+M N

2 2 Snm(sp’sr)cr(m)—:— Snoaz(ll(spa))/(zspa)’
m=—M r=0
n=— M’. ‘e

T M
p=0,---,N

fo (12)
where the Fourier summations are truncated to finite
summations (the expression for S,,(s,s,) is given in
Appendix II). Equation (12) constitutes a set of linear
simultaneous equations and can be solved numerically.
Assuming the det{S,,,(s,,5,)} 70, then the vector C(m)
can be determined and the total charge on each disk
approximately will be

N
0= [ pdoddqi(ed)=2ma’ I CO)L(5,0)/ 0
D1 r=0
(13)

It is well known that the values of Q obtained by
solving (12) and (13) are variational since a Galerkin
procedure [6], [7] is employed. This ensures the fast con-
vergence and the numerical stability of the solution as it is
shown below. Note that although the initial integral (5)
has a singular kernel, the application of Galerkin tech-
nique removes this singularity after the integrations over
the variables ¢,¢” and p,p’ [8].

III. NuUMERICAL COMPUTATIONS

In order to check the numerical accuracy of the solu-
tion convergence tests have been performed. In Table I a
convergence pattern for the computed Q values is given.
In all of the performed numerical tests a perfect conver-
gence pattern is observed. Even for very strong coupled
disks (D=~2a) M =2,N=2 the method was found to give
convergent results. Numerical computations have been
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TABLE 1
CONVERGENCE PATTERN OF Q FOR o/ H=1.428, D/ H =294,
B/H=43,and ¢,=3.09

N\ T 2 3

2 J.088(~12) 0.69u(-12) U.693(-12)

3 Ce090(~12) J.b665(-12) O.092(=12)

4 dalbu(~12) Cauv5(=-12) d.694(~1.)
TABLE II.

RESULTS FOR THE COUPLING COEFFICIENT k= C,/ C
AND SELF CAPACITANCE C FOR VARIOUS ¢, ot/ H AND
S/ H=(D—2a)/H INTERDISK SPACINGS (B/ H=6).

[ a/a=2.u K K k

S/hN\gr| 2.3 3.0 2.9
J.35 L.0C=2) ] 4.4(=2)] 3.7(~2)
6. 10 3.0(=2)1 4.3(~2)] 3.0(-2)
0.39 1.5¢=2)| 2.2(~2)| 2.u(-=2)
V.60 1.3(=2)] 1.7(~2)| 1.6(~2)

o U.s70 | U.30u 1.069

(p¥F/ma )

r&/h=3.0 K K K

S/in er 2.3 3.90% 9.9
V.05 4.9(=2)| 5.1(~2){ 2.a(=2)
¢.106 3.9(=2)) 53.4(~2) 1.2(~2)
0.33 2.09(-2) 1 4.1(=2)| ¢.9(-2)
0.6% 1.85(=2) ] 3.1(=2)] 4.5(~2)

(pF/gm , 3.899 1.122 3.200

a/H=1d.0 k k 3

S/h €T 2.3 5.09 9.2
u.05 1.9(=3)10,0(=3) [13.0(-3)
0.10 0.6(-3)] F.u(~3)]| veu(-3)
.33 [0.3(=3)] 3.0(-%)] 3.3(-3)
U.60 .33 7.0(-3)] 3.3(-3)

(PF/gm , 7.739 9.;J04J 30.5¢

carried out in several cases. In Table II the coupling
coefficient k=C,/C is given for several a/H, ¢ and
D/ H values. Results reveal that the gap capacitance C,is
a decreasing function of the dielectric constant ¢,.

IV. EXPERIMENTAL COMPARISON

Two equi-radii disks of a=5.8 mm and D=11.68 mm
(see Fig. 1) have been printed on a polyplate (¢, =2.3)
microstrip substrate with #=0.79 mm and B> H. The
reflection coefficient p for a 50-Q input impedance is
measured from the input of the one disk while the second
was left open as shown in Fig. 2. A HP network analyzer
is used to measure|the p in amplitude and phase. For the
dominant resonant mode an equivalent circuit is used to
deduce the input impedance as

. LRk +D(1 -1 /1)
’ 1+]Q(1Tf§/f2 140k +1)(1-12/1?)

RORY

JCg

—

[ANNGNG chFéLr
LT

Fig. 2. Equivalent circuit for the coupled resonators around the domi-
nant mode.
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Fig. 3. Theoretical (——) and experimental (+ + +) reflection coef-
ficient p versus the frequency for a single resonator af H=17.34,
B> H, and ,=2.3,

where f, = fo(1+ k)2, f,=fy(1+2k)~ "2, and f,, O, r are
for the resonance frequency, quality factor, and shunt
resistance of the single disk. In order to determine the Jor
@, r, a single disk of the same dimensions and substrate is
measured. In Fig. 3 the reflection coefficient p for a single
resonator is presented: it is found that f;=~9.20 GHz,
Q=~24, and r=300 Q. The measured f, is in agreement
with the quasi-static prediction methods {3]. The coupling
coefficient for the nearby disks is computed to be & =0.05.
In Fig. 4 the comparison between the measured and
computed values of p is given. A reasonable agreement is
observed around the f, resonance where the equivalent
circuit model is valid. Since kQ=1.2, the well-known
strong coupling effects are observed.
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_,GHz

go 82 @84 86 88 90 92 94 ' 96

Fig. 4. Comparison of theoretical (——) and experimental (+ + +)
reflection coefficients for two coupled disks as defined in Fig. 3 and
(D-2a)/H=0.1.

V. CONCLUSION

The coupling between two microstrip disk resonators is
investigated theoretically and experimentally. A Galerkin
procedure is developed and used for the computation of
gap capacitances for strongly coupled disk resonators.
The numerical method which is used is very stable and
only few expansion terms are required to ensure conver-
gence. The comparison of theory with an experimental
setup shows a reasonable agreement, which indicates that
the developed numerical technique can be used in other
printed circuit design problems.

APPENDIX |

Evaluation of Green’s Function

Assume a g= §(x)0(y) unit charge excitation at x=y =
0, z= H of Fig. 1, when the printed disks are absent.

The electrostatic potential G, (which satisfies the
Laplace equation) for z<H in terms of cylindrical
harmonic functions can be written as

+
G,= fo * W (1p)sinh(sz)g,dt (A.L1)

and for B>z>H
+ 00
G,= f tJ(tp)sinh(¢(B —z))g,dt.  (A.1.2)
0

Using the boundary conditions at the dielectric-air inter-
face

G=G,
€3G, /32 — er¢9G, /32=(8(p)) /p=(1/27) fo T 1 (to)de

for z=H and (A.l1.1) and (A.1.2) the unknown
coefficients g,, g, are determined. For z= H the Green’s
function is given as
+ 00
G= f dtW(t,B,H,er)J(1p).  (A.L3)
0

If the charge is located at (p’,¢’), by using the transla-
tional addition theorem for cylindrical wave functions [4]
the Green’s function given in (3) is obtained.

APPENDIX I1

Evaluation of S,,, Matrix Elements

Following a straightforward algebra the S,, matrix
elements are obtained as

S= [, (B J (D)~ ) (1, B, Hoe1)

Va8, 0) V(5 1,0) (A1)
where

(s, t,)

={a/($2+ )} { ), (1)L (s,0) +5,J,(ta) ], (5,0 }.
The integration in (A.2.1) is performed numerically by
using a Romemberg Check-Newton Cotes- numerical

algorithm [9]. Note that for #—+ oo the integrand con-
verges as fast as 0(z %),
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