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Coupled Microstrip Disk Resonators
NIKOLAOS K. uZI-JNOGLU and P. KATECHI

Abstruet-Tbe coupfing between microstrip disk resonators is inveati-

gaterf analytically and experimentally. The interaction between the printed
dfsks fs modeled by a gap capacitmrq which is computed by SQlving the
eorrespondfrrg ektrostatic problem. An integraf equation is nsed to de-

terndnc the nonsymmetrfc charge distribution on the disk resonators.
Nmnerieaf reaolta are presented for severaf cases. For a specific case the

prediction of the theory is compared with the experiment.

I. INTRODUCTION

T HE GAP CAPACITANCE for microstrip printed

circuits [1], [2] is investigated by several authors,

where mostly linear edge shapes are treated. In this article

the coupling between printed disk resonators is consid-

ered.

The geometry of the problem is defined in Fig. 1. The

coupled disk resonators are printed on a grounded dielec-

tric substrate. The substrate thickness is H with a relative

dielectric constant c,. Also a second perfect conductor-

ground plane is assumed at z = B. The coupling between

the two resonators is assumed to be mainly due to the

fringing effects of the electric fields; and, as a result, the

coupling between the two disks can be modeled by a gap

capacitance Cg. In Section II a method for computing Cg

is developed. The method is based on using the cylindrical

coordinates in conjunction with Galerkin technique. The
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Fig. 1. Coupled resonator geometry.

resonance frequencies for disk resonators can be com-

puted by assuming infinite magnetic conductivity resona-

tors walls [3]. The behavior of coupled resonators can be

predicted by considering an equivalent circuit around

each resonance frequency.

Assuming the disks to be raised at ~1 = 1/2 and V2 =

– 1/2 V the total charge on each disk will be

Q(D)= C,(D) +(l/2)C (1)

where C is the self capacitance of each disk. For very

large D values

lim Q(D)= (l/2)C
D++co

so the gap capacitance will be

Cg(D)= Q(D)– J& Q(D). (2)
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II. EVALUATION OF Cg(D) GAP CAPACITANCE

An integral equation method is used to handle the

electrostatic problem for coupled disk resonators. In order

to decrease the complexity due to the boundary condi-

tions, first the Green’s function G(r, r’) of the problem in

the absence of the printed disk conductors is determined.

The Green’s function is defined as the response of the

electric field to a unit charge excitation,

In terms of the cylindrical harmonic functions G(r, r’)

(see Appendix 1) is given as

% o/P’> @’)

. 1+ ‘dt ‘~~ J~(tp).l~(tp’)e im(o-o’) W(t, B, H, w) (3)
o ~..~

where TV(t,B, H, cr) = {(coth(t(B – H))+ wcoth(tH)) .

27rcO}-* and (p,+), (p’,@’) are the cylindrical coordinates

on the dielectric substrate (in (3) the source and observa-

tion points are assumed to be at z = z’ = H).

Given the disk voltages r,= – V2 = 1/2 the charge dis-

tributions qI(Pl, +1), q2(p2, +2) on the disks satisfies the
symmetry relations

%(%%) = @(P17 –%) = – 42(P2>fi –02) (4)

where (P1, %), (PZ, +2) are the local coordinates of the two

disks (see Fig. 1). The integral equation for the charge

distribution will be

J G(P17+l/P;>@i)~l(Pl@{)PidPid@i
D1

+j G(~,>+,/~i,+;)~,(~4,@4)04d~idoi=l/z (5)
D2

where D 1, D 2 are for the areas of the two disks. The

Point (%, ‘%) = (P;, @2) is assumed to be on D 1. Applying

the translational addition theorem for cylindrical waves

[4]

J~(tp2)ei~+2 = >@ Jk(tD)Jm+k(tp,) e’(~+’)+’(- 1)’

k=–ca

(6)

and using the symmetry relation (4), (6) can be written as

J
p’dp’d# { G(p, ~/P’, #)ql(P’, #)

D1

– G’(p,@/p’,@)ql(p’,n –+’)} = 1/2 (7)

where (p, +)< D 1 and

G’(p,@/p’, $’)

Jo m=-mk=. w

. W(t, B, H,~,)e ‘rn(o-o’)e’ko(- l)~.

Defining the Fourier coefficients

(8)

and multiplying (7) by e – ‘“+, after a Fourier integration,
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the following equation is obtained:

J“p’dp’ ‘Z* ~nm(P, P’)%(P’) = &o(l/2) (9)

o ~.-m

6.0 being the Kronecker delta and

~’m(P7P’) = ~+ ‘wI(~PMnw)

.(t3.~-Jm_JtD)(- l)n)W’(t,B,H,c.). (10)

In order to determine the unknown coefficients { qm(p’)}

a linearly independent set of functions is

%( P’) = ,$0 ln($P’) c(~) (11)

where ]Jx), m = O, k 1, t 2,”. ” are the modified Bessel

functions. The real numbers so,sl, sZ,””” are pivots and

C,(m) are unknown coefficients. The choice of modified

Bessel functions as a basis set is very appropriate since

these are monotonically increasing functions and as a

result are natural to the charge distribution on the disk.

A similar basis function has been used successfully for

microstrip line problems [5]. In order to apply the

Galerkin method, (11) is substituted in (9), then multiply-

ing both sides by I“(SPP) (with {sP } = {s,}), after an in-

tegration the following set of equations are obtained:

YM ,~o %m(~p>~.)c.(~)= 8noa2(z,(s,a))/(2spa),

for
n= —~,. ... ~

~=(),...,N

where the Fourier summations are truncated to

(12)

finite

summations (the expression for &(sP, s,) is given in

Appendix 11), Equation (12) constitutes a set of linear

simultaneous equations and can be solved numerically.

Assuming the det { &JsP,s,)} #0, then the vector c,(m)

can be determined and the total charge on each disk

approximately will be

It is well known that the values of Q obtained by

solving (12) and (13) are variational since a Galerkin

procedure [6], [7] is employed. This ensures the fast con-

vergence and the numerical stability of the solution as it is

shown below. Note that although the initial integral (5)

has a singular kernel, the application of Galerkin tech-

nique removes this singularity after the integrations over

the variables T, I-P’ and P, P’ [81.

III. NUMERICAL COMPUTATIONS

In order to check the numerical accuracy of the solu-

tion convergence tests have been performed. In Table 1 a

convergence pattern for the computed Q values is given.

In all of the performed numerical tests a perfect conver-

gence pattern is observed. Even for very strong coupled

disks (De2a) M= 2, N = 2 the method was found to give

convergent results. Numerical computations have been
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TABLE I
CONVERGENCEPATTFXtNOF Q FOR a/H = 1.428, D/H=2.94,

B/ H=4.3, and c,= 3.09

,f 1 ‘2 3

2 J.[)S3 (-12) 0. b9LJ (-12) 0, bY3(-l J)

3 :.09 {(-12) ‘J.6b> (-12) o.b~~(-11)

~ .’, L,, J(-IJ) C.. >5( -12.) J.ti94 (-l&)
Fig. 2. Equivsfent circuit for the coupled resonators around the domin-

ant mode.
TABLE II.

RSSULTS FOR THE COUPLING COEFFICIENT k = Cg/ C

ANU SELF CAPACITANCE C FOR VARIOUS c,, a/H AND

S/H= (D – 2a)/H INTRSUXSK SPACINGS (B/H= 6).

IPI -c
1.0

i
I 0.,0 ]3., (-2)/ 4.3(-2, / 3.,(-2)/

I 0.3J 11.5,-2)12.+ 2.”+
L). ba 1.3(-2) 1.7(-2) 1.6(-2)

u.&7Ll LI .5”” 1.OEJ
(pF/~m )

0,61
. +.+

0,4

0.2
I

00
GHZ

8,o 8,2 8,4 8.6 8.8 9.0 9.2 9’4 9:6 8.8

I 3.33 2.9(-2) I 4.1(-2)I G. 5(-2) I i
0.?52 1.3(-.) 3.i(-2) J. >(-2)

J. 699 1.123
(p F/:111 )

3 .200

+

i

{
-120-

1 f
GH.

8,2 8,4 8:8 88 9.0 9.2 8,4 8,6 9,8

carried out in several cases. In Table II the coupling

coefficient k = Cg/ ~ is given for several a/H, e, and

D/H values. Results reveal that the gap capacitance cg is

a decreasing functi$n of the dielectric constant e,.

Fig. 3, Tfteoretical (— ) and experimental (+++) reflection eoef.
ficient p versus the frequency for a sirtgte resonator a/H= 7.34,
B>H, and c,=2.3.

where jl =~o(l + k)– 112, ~2 =fo(l +2/c)– 1/2, and~o, Q, r are

for the resonance frequency, quality factor, and shunt

resistance of the single disk. In order to determine the&

Q, r, a single disk of the same dimensions and substrate is

measured. In Fig. 3 the reflection coefficient p for a single

resonator is presented: it is found that @!2.20 GHz,

Qm24, and r==300 Q. The measured f. is in agreement

with the quasi-static prediction methods [3]. The coupling

coefficient for the nearby disks is computed to be k =0.05.

In Fig. 4 the comparison between the measured and

computed values of p is given. A reasonable agreement is

observed around the jO resonance where the equivalent

circuit model is valid. Since kQ = 1.2, the well-known

strong couplh-tg effects are observed.

IV.

/

XPERIMENTAL COMPARISON

Two equi-radii isks of a =5.8 mm and D = 11.68 mm
(see Fig. 1) have een printed on a polyplate (c, = 2.3)

microstrip substra e with H= 0.79 mm and B>> H. The

reflection coeffici nt p for a 50-fl input impedance is

measured from the input of the one disk while the second

was left open as s own in Fig. 2. A HP network analyzer

is used to measure the p in amplitude and phase. For the

4dominant resonan mode an equivalent cir&it is used

deduce the input i pedartce as

to

‘z=+” 1 +jQ(k + 1)(1 –f//~2)

1 +JQ(l f;/f ) 1 +jQ(2k+ 1)(1 -f:/j’)
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+
IPI

1.0
1

1 +
-108 .

f
>GHZ

8.0 8.2 8.4 8.6 8;6 9:0 9.2 9:4 9!6

Fig, 4. Comparison of tkoreticaf (—) and experimental (+++)
reflection coefficients for two coupled disks as defined in Fig. 3 and
(D-2a)/H=O.l.

V. CONCLUSION

The coupling between two microstrip disk resonators is

investigated theoretically and experimentally. A Galerkin

procedure is developed and used for the computation of

gap capacitances for strongly coupled disk resonators,

The numerical method which is used is very stable and

only few expansion terms are required to ensure conver-

gence. The comparison of theory with an experimental

setup shows a reasonable agreement, which indicates that

the developed numerical technique can be used in other

printed circuit design problems.

APPENDIX I

Evaluation of Green’s Function

Assume a q= 6(x)8(Y) unit charge excitation at x =y =

O, z = H of Fig. 1, when the printed disks are absent.

The electrostatic potential G, (which satisfies the

Laplace equation) for z <H in terms of cylindrical

harmonic functions can be written as

G,= ~+ WtJo(tp)sifi(tz)g,dt (A.1.1)
“u
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and for B >z>H

G’=l+w
tJo(tp)sinh(t(B – z))g#t. (A.1.2)

Using the boundary conditions at the dielectric-air inter-

face

GI = Gz

cOiIG2/i3z – Crwo~G1/~z = (8(p) )/p = (1/2@~ + ‘~o(tp)dt
o

for z = H and (A. 1.1) and (A. 1.2) the unknown

coefficients gl, g2 are determined. For z = H the Green’s

function is given as

G=i+w
dtW(t,B, H, w)Jo(tp). (A.1.3)

If the charge is located at (p’,@’), by using the transla-

tional addition theorem for cylindrical wave functions [4]

the Green’s function given in (3) is obtained.

APPENDIX II

Evaluation of SnmMatrix Elements

Following a straightforward algebra the S.~ matrix

elements are obtained as

~m=J+m~t(~nm-Jn.m(t~)( -l)”) ~(t7B7H7-)

“Y~(sp, t,~)ym(sr, t,~) (A-z-l)

where

Yn(J&t,~)

= {a/(#+ t’)}.{tJn+,(ta)ln(spa) +spJn(ta)lm+,(spa)}.

The integration in (A.2. 1) is performed numerically by

using a Romemberg Check-Newton Cotes- numerical

algorithm [9]. Note that for te + m the integrand con-

verges as fast as O(t ‘4).
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